Are you sure you want to perform this action?
Anastomotic technique, gastrointestinal, end-to-side, open, continuous hand suture, double layer
You have not purchased a license - paywall is active: to the product selection
Single Access
Access to this lecture
for 3 days
€4.99 inclusive VAT

webop-Account Single
full access to all lectures
price per month
for the modul: vascular surgery
from 8,17 €
-
Anatomical principles
Large and small intestines have a remarkably similar wall structure. The reduced mechanical strength of strictly mucosal sutures stems from the small amount of connective tissue and collagen fibers in the mucosal layer.
Comprising connective tissue with a three-dimensional collagen fiber lattice and elastic meshes, the submucosa constitutes the “load-bearing” part of the intestinal sutures in all parts of the digestive tract. The muscularis layer is also a reliable suture bed, while the serosal covering assures a gas- and fluid-proof seal through fibrin exudation within just 4- 6 hours after intestinal suturing.
Due to various special characteristics and an increased complication rate, the colon plays a unique role. (The large intestine plays a special role here. Its complication rate is higher because of various characteristics). This is due to low collateral circulation, the lack of serosal covering on parts of the ascending and descending colon and on the entire extraperitoneal rectum, and a lower mural collagen concentration in the large intestine with higher collagenase activity. In addition, since the concentration of bacteria increases by a factor of 10 million, there is a greater risk of infection. And anaerobes are 1,000 times more common in the large intestine than aerobic bacteria.
-
Basic pathophysiology
Leak-proof anastomosis by secure suturing is an indispensable part of abdominal surgery. All gastrointestinal sutures have two objectives: First, to restore a liquid- and gas-proof inner layer with the least ischemic effect possible on the transection margins. And secondly, to ensure resistance to all physical stresses and strains such as fluctuating intraluminal pressure, peristalsis, longitudinal tension, and external pressure from adjacent organs. All of this should take place using a simple and rapid technique with the goal of minimizing contamination of the surgical field and implanting as little of the best tolerated foreign body material as possible.
In tissue, suture material acts as a foreign body. It facilitates and impairs the healing process in equal measure. Animal studies on burst pressure confirm that the strength of an anastomosis decreases until the fourth day and then increases once again until normal levels are reached at around day 10.
Nevertheless, the suture material still acts as a foreign body that delays healing and increases the risk of pathogen infection. There are various options for decreasing this foreign body irritation Minimizing the mass of suture material to be implanted, use of absorbable substances persisting only for the duration of the actual load bearing function, and use of materials with only a low potential for irritation.
As with other wounds, intestinal anastomoses heal in three phases. Lasting until day 4, the first phase is characterized by exudation of fibrin and blood constituents. During this time, the mechanical strength of the suture depends on the suture material used. In the second phase from day 4 to 14, vessel and fibroblast proliferation dominate. During the next phase of several months, the layers of the intestinal wall will reorganize.
-
Technical principles
Most gastrointestinal sutures had been developed as interrupted sutures (Jobert, Lembert, Halstedt, Herzog, Gambee, Allgöwer, Gussenbauer, Czerny, Wölfler, Albert, v. Mikulicz, etc.). Interrupted sutures offer the benefit in that the suture will not shorten and constrict the lumen when being tied.
The benefit of continuous sutures is the time saved compared with material-intensive interrupted sutures and the adjustment in suture tension, which follows luminal filling at the anastomosis. When the intestinal lumen is very full, this increases tension and in interrupted sutures will result in gaps between the sutures, while this tension is distributed evenly along the entire circumference of an anastomosis fashioned with continuous sutures. This will prevent contaminated material from spilling into the surrounding tissue, thereby impeding abscess formation.
Single Access
Access to this lecture
for 3 days
€4.99 inclusive VAT

webop-Account Single
full access to all lectures
price per month
for the modul: vascular surgery
from 8,17 €
Single Access
Access to this lecture
for 3 days
€4.99 inclusive VAT

webop-Account Single
full access to all lectures
price per month
for the modul: vascular surgery
from 8,17 €
-
Preparing the intestinal wall
-
Intestinal suture step 1A - double-layered suture - posterior wall
Due to the short gastric mesentery, the anastomosis cannot be rotated. Therefore, a so-called non-rotating technique is used here.
This comprises a double-layered suture technique (with PDS 4-0), with the posterior wall being anastomosed first.Start with a seromuscular continuous suture. This apposes the posterior wall of the duodenum with the posterior wall of the jejunum.
Keep the suture ends as stay sutures for orientation in the next step.
-
Intestinal suture step 1B - double-layered suture - posterior wall
-
Intestinal suture step 2A - double-layered suture - anterior wall
Follow this with a full-thickness continuous suture on the inside of the anterior wall. Use two separate sutures, each starting in the corner and working toward the middle. Stitch direction at the jejunum is from the inside out and at the duodenum from the outside in. Invert the mucosa into the lumen with the forceps when tying the suture.
-
Intestinal suture step 2B - double-layered suture - anterior wall
-
Inspecting the anastomosis
Now check the suture line and if necessary, place additional stitches wherever direct serosa-serosa contact is lacking.
Then check the anastomosis for any leakage (by forcing intestinal gas and fluid through it). And finally, check the width of the lumen by gently squeezing the site of the anastomosis between the tips of the thumb and index finger (illustrated here for an ileotransversostomy).
Single Access
Access to this lecture
for 3 days
€4.99 inclusive VAT

webop-Account Single
full access to all lectures
price per month
for the modul: vascular surgery
from 8,17 €
Single Access
Access to this lecture
for 3 days
€4.99 inclusive VAT

webop-Account Single
full access to all lectures
price per month
for the modul: vascular surgery
from 8,17 €
-
Literature summary
-
Ongoing trials on this topic
-
References on this topic
-
Reviews
-
Guidelines
-
literature search
Literature search under: http://www.pubmed.com